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The Effect of Increasing the Rate of Repetitions
of Classical Reactions

D. Bar1

Using quantum theory operator method, we discuss the general reversible classical
reactions A1 + A2 + · · · Ar ↔ B1 + B2 + · · · + Bs , where r and s are arbitrary natural
positive numbers. We show that if either direction of the reaction is repeated a large
number of times N in a finite total times T then in the limit of very large N , keeping T
constant, one remains with the initial reacting particles only. We also show that if the
reaction evolves through different possible paths of evolution, each of them beginning
at the same side of the reaction, proceeds through different intermediate consecutive
reactions and ends at the other side, then one may “realize” any such path by performing
in a dense manner the set of reactions along it. the same results are also numerically
demonstrated for the specific reversible reaction A + B ↔ A + C . We note that similar
results have been shown to hold also in the quantum regime.

1. INTRODUCTION

The general reversible reactions A1 + A2 + · · · + Ar ↔ B1 + B2 + · · · +
Bs , where r and s are two arbitrary positive natural numbers, have been stud-
ied by many authors (see, for example, (Ben-Avraham and Havlin, 2000), and
references therein). These studies discuss, especially, the effects of the single re-
action, or, in case it is repeated N times, the effect of these repetitions where the
general total time T increases proportionally to N . We can, however, imagine a
situation in which the rate of these repetitions increases and discuss the effect of
this increase upon the reaction. Such an effect have been studied in Kac (1947)
with respect to random walk and it was shown that when the rate of repeating this
walk becomes very large one obtains a Brownian motion (Nelson, 1967). It has
also been shown (Bar, 2001, 2003) with respect to the finite one-dimensional array
of N imperfect traps (Ben-Avraham and Havlin, 2000; Smoluchowski, 1917) that
as N becomes very large the survival probability (Ben-Avraham and Havlin, 2000)
of the particles that pass through them tends to unity. We show in this work that if
either direction of the mentioned reversible reaction is repeated a large number N
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of times in a finite total time T , then in the limit of very large N (where T is kept
constant) one remains with the initial reacting particles only.

We use quantum theory methods and terminology as done by many authors
that use quantum formalism for analyzing classical reactions (see for example,
Mattis and Glasser, 1998; and annotated bibligraphy therein). The most suitable
quantum method is the coherent state one (Glauber, 1963; Klauder and Sudarshan,
1968) which allows us to define simultaneously, as has been remarked in Swanson
(1992), the expectation values of the conjugate variables Q and P . Thus, they
may both have nonzero values in which case the entailed formalism resembles
(Swanson, 1992) the classical one and so it may be used for discussing classical
reactions.

The use of the coherent state formalism, together with second quantization
methods, for classical systems have been extensively studied by Masao (1976).
Since the described phenomena and, especially, the particles participating in the
reactions are classical we represent them here by real coherent states. That is,
we denote the reacting and product particles by the real coherent states |z >=
e− 1

2 |z|2 ∑n=∞
n=0 zn/(n!)

1
2 |n > , where z is the real number z = q + p/(2)

1
2 , q and p

are two arbitrary real c numbers and |n > are number representation eigenstates
(Klauder and Sudarshan, 1968). The masses of the reacting and product particles
are assigned, for convenience, the unity value. We note that although the mathe-
matical entities and “operators” involved in this method do not conform, as will be
shown, to the known quantum operator formalism, we, nevertheless, follow, except
for the differences, the conventional definitions and methods of the last theory. The
results obtained by applying the real coherent state formalism for classifical reac-
tions are exactly the same as those previously obtained (Bar, 2000) by applying
the complex coherent state methods for quantum reactions. Moreover, although
the real coherent state formalism entails an evolution operator (see Eq. (3)), which
is nonunitary and unbounded we, nevertheless, show that the results obtained are
valid also for this kind of operator. That is, we obtain for the classical reactions the
same results that were obtained (Bar, 2000) for the quantum analogues which are
discussed by using complex coherent state formalism (Glauber, 1963; Klauder and
Sudarshan, 1968), which involves unitary and bounded evolution operators. Need-
less to say that one may use the conventional complex coherent state formalism
(Glauber, 1963; Klauder and Sudarshan, 1968) for discussing classical reactions.

In Section 2, we discuss the reversible reaction A1 + A2 + · · · + Ar ↔ B1

B2 + · · · + Bs for the special cases of r = s = 1 and r = s = 2. That is, we study
the reversible reactions A ↔ B and A1 + A2 ↔ B1 + B2, and show that repeating
either direction of each a large number N of times in a finite total time T results, in
the limit of very large N , in a unity probability to remain with the initial reacting
particles only. The generalization to any finite r and s follows.

We note that since we discuss the probability to remain with the initial re-
acting particles the product particles of such reactions are not relevant (as the
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reacting ones) to our discussion. In Section 3 we discuss the more general and
natural case in which the product particles are relevant. That is, we assume
that the particles of the ensemble interact at different places and times and that
they begin from some given initial configuration of reactions and end at a fi-
nal different one. We assume that there are large number of different paths of
reactions that all begin at the given initial configuration and end at the final
one and we calculate the probability that a specified system of reacting parti-
cles evolves along some prescribed path of them. We note that such paths of
“states” for the diffusion controlled reactions have been discussed in (Masao,
1976; Mikhailov, 1981; Mikhailov and Yashin, 1985; Namiki, 1992) where use
was made of quantum field theory methods (Mahan, 1993; Enz, 1992; Mattuck,
1976), including Wick’s theorem (Mahan, 1993; Enz, 1992; Mattuck, 1976), to
derive the classical Feynman diagrams and paths (Feynman, 1948; Feynman and
Hibbs, 1965). These methods were also used in (Mikhailov, 1981; Mikhailov
and Yashin, 1985) for chemical kinetics. We show that taking the limit of a very
large number N of reactions along the prescribed path and performing them in a
dense manner one obtains a unity value for the probability of evolution along that
path.

In Section 4, we use a numerical model that has been used in Bar (2001) for
showing the effect of dense measurement on classical systems. This is the model
of two dimensional concentric billiard (Bar, 2001) that is used here to numerically
simulate the reversible reaction A + B ↔ A + C . The two possible modes of
reflections inside the billiard; either between the two concentric circles or between
points of the outer circle, represent the two directions of the reaction. We note
that nuclear and radioactive reactions are well simulated by billiards in which the
stationary scattering circles represent the interactions between particles (see, for
example (Bauer and Bertsch, 1990) in which a model of a rectangular billiard
with a circle inside was used to discuss the decay law of classical systems). We
show that the numerical billiard simulations conform to the analytical results of
Sections 2 and 3.

2. THE REVERSIBLE REACTION A1 + A2 + · · · AR ↔ B1+
B2 + · · · + BS

We assume that we have some set of N identical particles so that the con-
figuration in which the ith particle is located at qi (i = 1, 2, . . . , N ) is defined as
a state of the system and denoted, in Dirac’s notation, |q1, q2, . . . , qN 〉(|q N 〉) (for
distinguished sets of particles we partition (Masao, 1976) the total N system to
N1, N2, . . . , subsystems). Thus, when representing in the following classical par-
ticles by states we mean that they are elements of some configuration of the whole
system. Following this terminology we may calculate the probability to find the
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set of particles in some definite state |q N 〉 as (Masao, 1976)

F (N )(q1, q2, . . . , qN ; t) =
∑

all permutations of qi

f (N )(q1, q2, . . . , qN ; t)

where f (N )(q1, q2, . . . , qN ; t) is some normalized distribution function. To this
probability one assign, as done in Masao, (1976), a “state” |F(t)〉 = ∑∞

N=0

∫
d QN F (N )(q1, q2, . . . , qN ; t)|q N 〉, where

∫
d QN =

∫
dq N

N ! (the division by N ! is
necessary (Masao, 1976) so as not to overcount the state |q N > N ! times). Thus,
the former probability to find the system in the state |q N 〉 may be written as (Masao,
1976) F (N )(q1, q2, . . . , qN ; t) = 〈q N |F (t)〉.

We discuss first the general reversible reaction A1 + A2 + . . . Ar ↔ B1 +
B2 + · · · + Bs for the specific case of r = s = 1, A ↔ B where A and B are, as
noted, represented by the two coherent states (Klauder and Sudarshan, 1968)

|z A〉 = e− 1
2 |z A|2

n=∞∑
n=0

zn
A

(n!)
1
2

|n〉
(1)

|zB〉 = e− 1
2 |zB |2

n=∞∑
n=0

zn
B

(n!)
1
2

|n〉

Using the following general equation for any two operators X and Y (Klauder and
Sudarshan, 1968)

eY Xe−Y = X + [Y, X ] + 1

2!
[Y, [Y, X ]] + · · ·

where [Y, X ] is the commutation [Y, X ] = Y X − XY , one obtains

U (q, p)(αP + βQ)U−1(q , p) = α(P + p) + β(Q + q) (2)

The α, β are arbitrary parameters, U (q , p) and U−1(q, p) are given respectively
by U (q, p) = epQ−q P , U−1(q , p) = U (−q , −p), and Q, P are the coherent state
operators that satisfy [Qi , Pj ] = δi j . That is, U (q, p) translates the operators Q
and P by q and p, respectively. Now, since the coherent states have been defined,
as remarked, in terms of the number representation eigenstates (see Eq. (1)) we
write the time evolution operator of the relevant states as eNt , where N is the
number operator (Klauder and Sudarshan, 1968) (note that since we discuss in this
paper real coherent states the evolution operator is real also).

N = a†a =
(

Q − P√
2

)(
Q + P√

2

)
= 1

2
(Q2 − P2 + 1)

N is defined analogously to the corresponding operator of the complex coherent
state formalism (Glauber, 1963; Klauder and Sudarshan, 1968) but without the
complex notation i in the middle expression. Note that the operator N is not
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positive definite and this to remind us, as remarked, that the real coherent state
formalism discussed here does not conform to the conventional quantum operator
process. Nevertheless, as remarked, the final results obtained here are exactly the
same as those accepted in (Bar, 2000) from the quantum complex coherent state
formalism. The commutation [Qi , Pj ] = δi j have been used at the right-hand side
of the last equation. Applying the operator eNt on the coherent state |z〉 from
Eq. (1), and taking the scalar product of the result with the conjugate state 〈z| one
obtain (using 〈n|eNt |m〉 = entδnm , since in the number representation the operator
N is diagonal)

〈z̀|eNt |z〉 = exp

(
−1

2
|z|2 − 1

2
|z̀|2

) n=∞∑
n=0

(z̀et z)n

n!

= exp

(
−1

2
|z|2 − 1

2
|z̀|2 + z̀et z

)
= 〈z̀|et z〉 (3)

= 〈z̀|(cosh t + sinh t)z〉 = 〈q̀, p̀|qt , pt 〉
The last result is obtained by writing z in terms of q , p in which we have

qt = q(cosh t + sinh t), pt = (cosh t + sinh t) (4)

We, now, calculate, using Eq. (3), the probability p(|qA, pA〉) to remain with the
initial particle A after the reaction A → B where the particle B is represented by
the coherent state eNt |z A〉. This is given by

〈z A|eNt |z A〉 = 〈qA, pA|qAt , pAt 〉 = exp

(
− 1

4
(qA + pA)2

− 1

4

(
qAt + pAt

)2
) m,n=∞∑

m,n=0

(
qA + pA

)m(
qAt + pAt

)n

2
m+n

2 (m!n!)
1
2

〈m | n〉

= exp

(
−1

4
(pA + qA)2 − 1

4

(
pAt + qAt

)2
)

×
n=∞∑
n=0

(qA + pA)n(qAt + pAt )
n

2nn!

= exp

(
− 1

4
(pA + qA)2 − 1

4

(
pAt + qAt

)2

+ 1

2
(qA + pA) · (

qAt + pAt

))

= exp

(
−1

4
(pA + qA)2 − 1

4
(pA + qA)2(cosh t + sinh t)2
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+ 1

2
(qA + pA)2 · (cosh t + sinh t)

)

= exp

(
−1

2
(pA + qA)2

(
1

2
+ 1

2
(cosh t + sinh t)2

− (cosh t + sinh t)

))
(5)

Note that since we discuss coherent states the interpretation (Klauder and
Sudarshan, 1968) of the expression 〈z A|eNt |z A〉 is the probability to find the mean
position and momentum of the coherent state eNt |z A〉, which represents B, equal
to those of z A, which represents A, and this probability is equivalent in our discus-
sion to remaining with the particle A. From Eq. (5) one obtains the probability to
remain with the initial particle A after a single reaction A → B. If it is repeated
n times in a finite total time T one obtains (using n = T

δt , where δt is the duration
of each reaction)

pn(|qA, pA〉) = exp

(
− T

2δt
(pA + qA)2

(
1

2
+ 1

2
(cosh δt + sinh δt)2

− (cosh δt + sinh δt)

))
(6)

In the limit of very large n (very small δt) we expand the hyperbolic functions in
a Taylor series and keep terms up to second order in δt . We obtain

pn(|qA, pA〉)

= exp

(
− T

2δt
(pA + qA)2

(
1

2
+ 1

2
(1 + 2δt2 + 2δt) −

(
1 + δt2

2
+ δt

) )

= exp

(
− T

4δt
(pA + qA)2δt2

)
= exp

(
−T

4
(pA + qA)2δt2

)
(7)

Thus, in the limit n → ∞(δt → 0) we have

lim
n→∞ pn(|qA, pA > ) = lim

δt→0
exp

(
−T

4
(pA + qA)2δt

)
= 1 (8)

Now, although we refer in the former equations to the direction A → B all our
discussion remains valid also for the opposite one B → A. That is, repeating
either side of the reaction A ↔ B a large number of times n in a finite total time
T results, in the limit of very large n, in remaining (with probability 1) with the
initial particles of the repeated reaction.

We, now, discuss the reversible reaction A + B ↔ C + D in which we have
two reacting particles. We continue to use the number evolution operator of N
and take into account that the initial particles A and B interact. Thus, representing
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these particles as the coherent states |qA, pA〉 · and |qB , pB〉 we write, for example,
the left-hand side direction of the former reversible reaction A + B → C + D as

exp((NA + NB + PA PB + Q A Q B)t)|qA, pA〉qB , pB〉 = |qC , pC 〉|qD , pD〉
(9)

where the terms Q A Q B and PA PB represent, as for the boson particles discussed
in (Klauder and Sudarshan, 1968), the interaction of the particles A and B, and
NA, NB are the number operators for them. Note that, as for the reaction A ↔ B
(see the discussion after Eqs. (4) and (5)), the operation of the evolution operator on
the coherent state |qA, pA〉|qB , pB〉, which is now more complicated due to the in-
teraction between A and B, is represented by |qC , pC 〉|qD , pD〉. We calculate, now,
the probability that the reaction A + B → C + D results in remaining with the
initial particles A and B only (we denote this probability by p(|qB , pB〉|qA, pA〉)).

p(|qB , pB〉|qA, pA〉) = 〈qB , pB |〈qA, pA| exp((NA + NB + PA PB

+ Q A Q B)t)|qB , pB〉qA, pA〉 (10)

Using Eqs. (1), (3), and the following coherent states properties (Klauder and
Sudarshan, 1968)

〈q, p|Q|q, p〉 = q , 〈q , p|P|q , p〉 = p (derived by using the operator U from
Eq. (2) and the relation N |0, 0〉 = 0) we obtain

p(|qB , pB〉|qA, pA〉) = exp((qAqB + pA pB)t)

·〈qB , pB |〈 qA, pA|qBt , pBt 〉|qAt , pAt 〉

= exp((qAqB + pA pB)t) · exp

(
−1

4
(qA + pA)2

− 1

4
(qB + pB)2 − 1

4

(
qAt + pAt

)2 − 1

4

(
qBt + pBt

)2
)

.

m,n=∞∑
m,n=0

(qA + pA)m
(
qAt + pAt

)n

2
m+n

2 (m!n!)
1
2

〈m|n〉

s,r=∞∑
s,r=0

(qA + pA)s
(
qAt + pAt

)r

2
s+r

2 (s!r !)
1
2

· 〈s|r〉

= exp((qAqB + pA pB)t)exp

(
−1

4
(qA + pA)2

− 1

4
(qB + pB)2 − 1

4

(
qAt + pAt

)2 − 1

4

(
qBt + pBt

)2
)
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n=∞∑
n=0

(qA + pA)n
(
qAt + pAt

)n

2nn!

.

r=∞∑
r=0

(qA + pA)r
(
qAt + pAt

)r

2r r !

= exp((qAqB + pA pB)t) exp

(
−1

4
(qA + pA)2

−1

4
(qB + pB)2 − 1

4

(
qAt + pAt

)2 − 1

4

(
qBt + pBt

)2

+ 1

2
(qA + pA)

(
qAt + pAt

) + 1

2
(qB + pB)

(
qBt + pBt

))

= exp

(
1

2
(cosh t + sinh t)((qA + pA)2 + (qB + pB)2)

−1

4
(1 + (cosh t + sinh t)2).((qA + pA)2 (11)

+ (qB + pA)2) + (qAqB + pA pB)t

)

This is the probability to remain with the original particles A and B after one
reaction. Repeating it a large number of times n in a finite total time T , where
n = T

δt (δt is the time duration of one reaction) one obtains for the probability to
remain with A and B.

Pn(|qB , pB〉|qA, pA〉) = exp

(
T

δt

(
(qAqB + pA pB)δt

+
(

1

2
(cosh δt + sinh δt) (12)

− 1

4
(1 + (cosh δ t + sinh δ t)2)

)

. ((qA + pA)2 + (qB + pB)2)

))

In the limit of very large n we expand the hyperbolic functions in a taylor series
and retain terms up to second order in δt . Thus,

Pn(|qB , pB〉|qA, pA〉) = exp

(
T

δt

(
(qAqB + pA pB)δt +

(
1

2

(
1 + δt2

2
+ δt

)

− 1

4
(2 + 2δt2 + 2δt)

)
((qA + pA)2 + (qB + pB)2)

))
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= exp

(
T

(
(qAqB + pA pB) − δt

4
((qA + pA)2

+ (qB + pB)2)

))
(13)

Taking the limit of n → ∞ (δt → 0) we obtain

lim
n→∞ Pn(|qB , pB〉|qA, pA〉) = exp(T (qAqB + pA pB)) (14)

The last probability tends to unity when the c-numbers of either A or B (or both)
are zeroes, that is, when A or B (or A and B) are in their ground states (in which
case they are represented by only the first term of the sums in Eq. (1)). Needless
to say that all the former discussion remains valid also for the opposite direction
A + C → A + B. Thus, we conclude that when either direction of the reversible
reaction A + B ↔ C + D is repeated a large number of times n in a finite total
time and when at least one of the reacting particles was in the ground state so that
its c-numbers are zeroes one obtains, in the limit of very large n, a result as if the
repeated reaction did not occur at all.

It can be shown that the general reversible reaction A1 + A2 + · · · + Ar ↔
B1 + B2 + · · · + Bs , where r, s are any two positive natural numbers, also results
in a similar outcome if at least one of the reacting particles has zero c numbers. We
note that the last condition is not necessary when we begin with only one reacting
particle as we see from the reaction A ↔ B.

3. THE PROBABILITY TO FIND GIVEN FINAL CONFIGURATION
DIFFERENT FROM THE INITIAL ONE.

We now discuss the more general and natural case in which we have an
ensemble of particles and we calculate the probability to find at the time t a
subsytem of this ensemble at some given configuration if at the initial time t0 it
was at another prescribed configuration. We assume that the corresponding time
difference (t − t0) is not infinitesimal and that during this time the subsystem
has undergones a series of reactions. The passage from some reaction at some
intermediate time ti to the neighbouring one at the time (ti + δt) is governed by the
correlation between the corresponding resulting configurations of the subsystem
at these times. Thus, restricting, for the moment, our attention to the case in which
a particle in the subsystem that was at the time t0 in the state A and at the time
(t0 + δt) in B we can write the relevant correlation (Klauder and Sudarshan, 1968)
between these two states as

τ
(

A, B; t0A , (t0 + δt)B
) = 〈qAt0

, pAt0
|qBt0+δt , pBt0+δt 〉 (15)
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where |qAt0
, pAt0

〉 and |qBt0+δt , pBt0+δt 〉 are the coherent states that represent the
particles A and B at the times t0 and t0 + δt , respectively (see Eqs. (3) and (4))
and the angular brackets denote an ensemble average over all the particles of it. We
note that if A = B, τ measures (Klauder and Sudarshan, 1968) the autocorrelation
of either the particle A or B, and when A �= B, τ is the crosscorelation (Klauder
and Sudarshan, 1968) of the two particles. It can be shown, using Eqs. (1) and (15)
that the following relation∣∣τ(

A, B; t0A , (t0 + δt)B
)∣∣2 = τ

(
A, A; t0A ; t0A

)
τ (B, B; (t0 + δt)B , (t0 + δt)B)

(16)

is valid. That is, the modulus of the crosscorrelation of the particles A and B at
the times t0 and (t0 + δt) equals the product of the autocorrelation of the particle
A at the time t0 by that of B at the time (t0 + δt). The last relation is interpreted
(Klauder and Sudarshan, 1968) as the probability density for the occurrence of
the reaction A → B at the time (t0 + δt). That is, given that the system was in
“state” A at the time t0, the probability to find it at the time (t0 + δt) in “state”
B is given by Eq. (16). We can generalize to the joint probability density for the
occurrence of n different reactions between the initial and final times t0 and t ,
where each involves two different particles and is of the kind Ai → Ai+1. That
is, each reaction is composed of two parts; the first one is that in which a particle
of the subsystem is observed at the time ti to be in state Ai , and the second that
in which it is observed at the time ti + δt to be in the state Ai+1. Thus, the total
time interval (t − t0) is partitiond into 2n subintervals during which the n reactions
occur. The total correlation is

|τ (A1, A2, . . . , A2n; t0, t0 + δt , . . . , t)|2

= τ (A1, A1; t0, t0) · τ (A2, A2; t0 + δt , t0 + δt) · · · τ (A2n , A2n; t , t)

=
k=2n−1∏

k=0

τ (Ak+1, Ak+1; t0 + kδt , t0 + kδt) =
k=n−1∏

k=0

τ (A2k+1, A2k+1; t0

+2kδt , t0 + 2kδt) · τ (A2k+2, A2k+2; t0 + (2k + 1)δt , t0 + (2k + 1)δt)

=
k=n−1∏

k=0

|τ (A2k+1, A2k+2; t0 + 2kδt , t0 + (2k + 1)δt)|2 (17)

The last result was obtained by using Eq. (16). By the notation A2n we mean, as
remarked, that there are n separate reactions each of which involves two states
(and not 2n different particles). Now, we show in the previous section, for either
direction of the reversible reaction A ↔ B, that the probability to remain in the
initial state A(or B) tends to unity in the limit of a very large number of repetitions,
in a finite total time, of A → B (or B → A) which amounts to performing each
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such reaction in an infinitesimal time δt . That is, in this limit of vanishing δt each
factor of the last product in Eq. (17), which is the probability for the reaction
Ai → Ai+1, tends to unity and with it the joint probability for the occurrence of
the n reactions. Thus, the specific prescribed path of reactions is followed with a
probability of unity.

From the last discussion we may obtain the joint probability density for
the case in which some of the n intermediate reactions are of the more general
kind A1 + A2 + · · · + Ar → B1 + B2 + · · · + Br , where r is an arbitrary natural
positive number. That is, at some of the 2n times there may occur, in a simultaneous
manner, r different reactions at r different places each of the kind A → B. Thus,
we assume that r particles in the subsystem that were at the time to + iδt , in the
states A j ( j = 1, 3, 5, . . . , 2r − 1). were observed at the time (t0 + (i + 1)δt) to
be in the states A j+1( j + 1 = 2, 4, 6, . . . , 2r ). We assume that at each of the other
intermediate times there occurs only one single reaction Ai → Ai+1. Thus, there
are (n + r − 1) reactions each of them occurs between two particles. In this case
the corresponding total coherence among all these reactions is

τtotal = τ (A1, A2, . . . Ai+1, Ai+2, . . . , Ai+2r , . . . , A(2n+2r−2); t0, t0 + δt ,

. . . , t0 + iδt , t0 + (i + 1)δt , . . . t0 + iδt , t0 + (i + 1)δt︸ ︷︷ ︸
r

, . . . , t)

where the underbrace denotes that the r particles observed at the time (t0 + iδt) as
A j were seen to be at the time t0 + (i + 1)δt as A j+1( j = 1, 3, · · · , 2r − 1). Again
the notation A(2n+2r−2) means that we have (n + r − 1) reactions each involving,
as remarked, two states. Using Eqs. (16) and (17) and the former equation for τtotal

we find that the joint probability to find at the time t the relevant subsystem at the
given final configuration after the occurence of these (n + r − 1) reactions is

|τtotal|2 = τ (A1, A1; t0, t0)τ (A2, A2; t0 + δt , t0 + δt) . . . τ (Ai+1, Ai+1; t0

+ iδt , t0 + iδt) · τ (Ai+2, Ai+2; t0 + (i + 1)δt , t0 + (i + 1)δt)

. . . τ (Ai+2r−1, Ai+2r−1; t0 + iδt , t0 + iδt) · τ (Ai+2r , Ai+2r ; t0

+ (i + 1)δt , t0 + (i + 1)δt) . . . τ (A(2n+2r−2), A(2n+2r−2), t0 + 2nδt , t0

+ 2nδt) =
k=n−1∏

k=0

τ (A2k+1, A2k+1; t0 + 2kδt , t0 + 2kδt)

× τ (A2k+2, A2k+2; t0 + (2k + 1)δt , t0 + (2k + 1)δt) ·
r−1∏
j=1

τ (Ai+ j , Ai+ j ; t0 + iδt , t0 + iδt) · τ (Ai+ j+1, Ai+ j+1; t0
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+ (i + 1)δt , t0 + (i + 1)δt) =
k=n−1∏

k=0

|τ (A2k+1, A2k+2; t0 + 2kδt , t0

+ (2k + 1)δt)|2
j=r−1∏

j=1

|τ (Ai+ j , Ai+ j+1; t0 + iδt , t0 + (i + 1)δt |2 (18)

The first product of the last result is the same as that of Eq. (17) and the second
takes account of the r − 1 simultaneous reactions at the time (t0 + (i + 1)δt) (the
first product involves also one of the r simultaneous reactions at the time (t0 +
(i + 1)δt)). Each of the reactions in both products is of the kind A → B which
was shown in the former section (see also the discussion after Eq. (17)) to have
a unity probability for remaining with the initial particle A in the limit in which
the time duration of the reaction becomes infinitesimal. That is, in this limit in
which the time alloted for each reaction A → B becomes very small each factor
of each product of Eq. (18), and with it the whole expression, tends to unity. If any
particle A of the sybsystem does not react with any other particle at some of the 2n
intermediate times then we may denote its no-reaction at these times as A → A
and the probability for it to remain in the initial state (which is the same as the
final one) is obviously unity.

Thus, we see that the probability to find at the time t the given ensemble
of particles following a given path of reactions (from a large number of possible
paths) tends to unity if the relevant reactions are performed in a dense manner.
That is, each occuring in an infinitesimal time δt .

4. BILLIARD SIMULATION OF THE REVERSIBLE
REACTION A + B ↔ A + C

We, now, show that the results described in the previous sections have also
strong numerical support. This is demonstrated for the reversible reaction A +
B ↔ A + C , which is simulated here by using the two-dimensional circular bil-
liard (Bar, 2001) which is composed of two concentric circles. We assume that
initialy we have a large ensemble of identical point particles each of them is the
component A of the reaction A + B ↔ A + C . All of these particles are entered,
one at a time, into the billiard in which they are elastically reflected by the two
concentric circles. That is, the angles before and after each reflection are equal.
We assume that on the outer circle there is a narrow hole through which the par-
ticles A leave the billiard. Once a particle is ejected out a new one is entered
and reflected inside the billiard untill it leaves and so for all the particles of the
ensemble. There are two different possible kinds of motion for each point parti-
cle A before leaving the billiard; either it is reflected between the two concentric
circles or, when the angle of reflection is large, reflected by the outer circle only
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without touching the inner one. Now, since both motions are elastic each particle
A, once it begins its reflection in either kind of motion, continues to move only
in this kind untill it leaves through the narrow opening. The component B of the
reaction denotes the outer larger circle, and the component C denotes both circles.
That is, the left hand side A + B of the reaction signifies that the point particle
A moves inside the billiard and is reflected by the outer circle only, whereas, the
right-hand side A + C denotes the second kind of motion in which the point balls
A are reflected between the two circles. We call these two kinds of paths “states”
(Bar, 2001), so that the path that touches both circles is “state” 1 and the one that
touches the outer circle only is “state” 2. This billiard model was studied in (Bar,
2001) as an example of a classical system that behaves the same way quantum
systems do when exposed to a large number of repetitions, in a finite total time, of
the same experiment (Misra and Sudarshan, 1977; Giulini et al., 1996; Pascazio
and Namiki, 1994; Cook, 1988; Harris and Stodolsky, 1981; Bixon, 1982; Itano
et al., 1990; Kofman and Kurizki, 1996; Simonius, 1978; Aharonov and Vardi,
1980; Facchi et al., 1999). The concentric billiard is, schematically, represented in
Fig. 1.

Now, since in such a system we can not follow the parth of each particle
and can not differentiate between the two kinds of motion we have to consider,
as done for the nuclear and radioactive processes (Bauer and Bertsch, 1990), the
activities of these particles in either path. That is, the rate at which the entire

Fig. 1. A schematic representation of the concentric circular
billiard that simulates the reversible reaction A + B ↔ C + D.
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ensemble of particles, being at either state, leaves the billiard. We assume for the
activity discussed here, as is assumed (Bauer and Bertsch, 1990) for the nuclear
and radioactive’s activities, that each particle A enjoys arbitrary initial conditions,
so in the following numerical simulations we assume that it may begin its journey
inside the billiard at either “state” which is determined randomly using a random
number generator.

We want to show, numerically, that if either side of this reversible reaction
A + B ↔ A + C is repeated a large number of times N in a finite total time T ,
then, in the limit of very large N , the activity obtained is the same as the “natural
activity” (Bar, 2001) that results when no such repetitions are performed (Bar,
2001). For that matter, we take into account that the reversible reactions that occur
in nature have either equal or different rates for the two directions of the reactions
and that the total activity of the ensemble of particles depends critically upon these
rates (Bauer and Bertsch, 1990). If, for example, we consider the equal rate case
then we have to discuss the rate of evacuation of the billiard when each particle is
allowed, after a prefixed number of reflections in either state, to pass, if it is still
in the billiard, to the other one. This activity is shown by the solid curve in Fig. 2
in which the ordinate axis denotes the number of particles A that leave the billiard
in prescribed time intervals binned in units of 60 (Bauer and Bertsch, 1990). We

Fig. 2. The dashed curve shows the activity obtained when
all the 106 particles of the ensemble are allowed to be only
in “state” 2, in which they are reflected between points
on the outer circle only. The dashdot curve is the activity
when all these particles are allowed to move only in “state”
1 (between the two circles). For the values assigned here to
the outer and inner circles (6 and 3) the dashed (dashdot)
curve is the maximum (minimum) activity. The solid curve
shows the activity obtained when the particles in either
state pass to the other after every 1100 reflections. The x
axis specifies time binned in units of 60.
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assume (Bauer and Bertsch, 1990) that each point particle A in either state moves
with the same speed of 3, and the hole through which they leave has a width of
0.15. We denote the outer and inner radii of the billiard by r1 and r2, respectively,
and assign them the values of r1 = 6 and r2 = 3. The initial number of the particles
A was 106, and each one of them passes from one “state” to the other, if it did not
leave the billiard through the hole, after every 1100 consecutive reflections. We
note that this rate of one passage for every 1100 reflections is typical and common
for these kinds of billiard simulations (Bauer and Bertsch, 1990; Gutkin, 1986;
Hobson, 1975).

The natural activity is obtained, as remarked, when the entire ensemble of
106 particles A enter, one at a time, to the billiard at the same “state” and remain
all the time in this “state” without passing to the other until they leave the billiard.
The dashed curve in Fig. 2 shows this natural activity when all the particles A
are in “state” 2 in which they are reflected only between points of the outer circle
untill they leave the billiard. The dash-dot curve shows the activity when all the
particles A are in “state” 1 in which they are reflected only between the two circles.
It has been found that for the values assigned here to the radii of the outer and
inner circles (6 and 3) the activity of “state” 2 shown by the dashed curve is the
maximum available and that of state 1 shown by the dashdot curve is the minimum.
The large difference between the two activities has its source in the range of the
allowed angles of reflections which is much larger in state 2 than in state 1. This
is because the minimum trajectory between two neighbouring reflections in state
2, where the particles A are reflected between points of the outer circle only, may
be infinitesimal compared to the corresponding trajectory in state 1 which is (we
denote the trajectories between neighboring reflections in states 1 and 2 by d1 and
d2, respectively) d1 min = r1 − r2. For the values assigned here to the radii r1 and
r2 of the two concentric circles (r1 = 6 and r2 = 3) d1 min = 3. We note that the
maximum trajectory between two neighbouring reflections in state 2 is equal to
the corresponding one in state 1, that is

d1 max = d2 max =
√

r2
1 + r2

2

Thus, the particles in A have many more possibilities to be reflected to the hole
and leave the billiard in state 2 than in state 1 and, accordingly, their activity is
much larger. The solid curve in Fig. 2 is, as remarked, the activity obtained when
the particles A are transferred between the two states at the rate of one passage
for every 1100 reflections and so, as expected, its activity is between the two other
activities shown in Fig. 2.

We numerically interfere with the rate of the systematic passage of the point
particles A between the two states such that this rate is accelerated. We refer in the
following not only to a specific passage between the two “states” but also gives the
results in parentheses for the opposite passage. Thus, it is found that the activity
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of the entire ensemble is directly (inversely) proportional to the rate of the passage
from state 1 (2) to state 2 (1) when the opposite passage from state 2 (1) to state 1
(2) remains at the rate of one for every 1100 reflections. Thus, we have found that
when the particles in state 1 (2) are transferred to state 2 (1) at the maximum rate
of one passage for each single reflection and the particles in state 2(1) are passed
to the state 1(2) at the rate of one for every 1100 reflections then the activity
of the particles A is maximal (minimal). But as we have remarked the maximal
(minimal) activity is obtained only when each particle of the entire ensemble is
always in state 2(1). In other words, as we have remarked, a very large number
of repetitions of the left (right) direction A + B → A + C(A + C → A + B) of
the reaction where the right (left) directon A + C → A + B(A + B → A + C)
occurs every 1100 reflections, yields a result as if the densely repeated reaction
never happened and the activity obtained is the natural one in which no external
repetition is present. The dashed curve in Fig. 3, which is the same as the dashed
one of Fig. 2, shows the activity obtained when all the 106 particles A of the
ensemble are allowed to move only in state 2 until they leave the billiard. The
solid curve is the activity obtained when the reaction A + C → A + B is repeated

Fig. 3. The dashed curve, which is the same as the dashed curve of
Fig. 2 (they look slightly different since the abcissa axes of these
figures are different), shows the activity obtained when all the 106

particles A of the ensemble are numerically constrained to be only
in “state” 2 until they evacuate the billiard. State 1 is not allowed for
them. The solid curve is the activity obtained when each particle in
state 1 is passed to “state” 2 after each single reflection, whereas those
in “state” 2 pass to the opposite one only after every 1100 reflections.
As for Fig. 2 the abcissa axis denotes time binned in units of 60. Note
the similarity between the two curves.
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Fig. 4. The apparently one curve shown in the figure is actually two
curves one dashed and the other solid. The dashed curve, which is the
same as the dashdot curve of Fig. 2, shows the activity obtained when
all the 106 particles A of the ensemble are numerically constrained
to be only in “state” 1 until they evacuate the billiard. State 2 is not
allowed for them. The solid curve is the activity obtained when each
particle in state 2 is passed to “state” 1 after each single reflection,
whereas those in “state” 1 pass to the opposite one only after every
1100 reflectons. As for Fig. 2 the abcissa axis denotes time binned in
units of 60. Note that the two curves are almost identical (the dashed
curve has a longer tail (for large t) than the solid one).

after each single reflection and the opposite one A + B → A + C after every 1100
reflections. It is seen that these curves are similar to each other. That is, we realize,
in accordance with the analytical results of the former sections, that a large number
of repetitions of the reaction yields a result that characterizes the activity obtained
in the absence of such repetitions.

This is seen, in a much more clear way, in Fig. 4 for the other direction
A + B → A + C of the reaction. The apparent single graph of the figure is actually
composed of two curves; one solid and the other dashed. The solid curve shows the
activity obtained when the reaction A + B → A + C is repeated after each single
reflection and the opposite one A + C → A + B after every 1100 reflections. The
dashed curve, which is identical to the dash-dot one from Fig. 2 is the activity
obtained when all the particles A of the ensemble are constrained to move only in
state 1 until they leave the billiard. Note that the two curves are almost the same
except for the longer tail of the dashed curve.

From both Figs. 3 and 4, we realize that the large number of repetitions of
either direction of the reversible reaction A + B ↔ A + C has the effect as if it
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has not been performed at all and the actual activity obtained is that of the natural
one that does not involve any repetitions.

We note that as the analytical results are obtained in the limit of the largest
number (actually infinite) of repetitions so the similar numerical results are ob-
tained in the limit of the largest number of repetitions of the reaction. That is, of
numerically repeating it after each single reflection. In other words, a mere high
rate (which is not the maximal) of one side of the reaction is not enough to produce
the results shown in Figs. 3 and 4. This is clearly shown in Fig. 5 the solid curve
of which shows the activity obtained when each particle in “state” 1 is passed to
“state” 2 after every two neighboring reflections whereas those of “state” 2 are
passed (one at a time) after every 1100 reflections. Note that the solid curve in
Fig. 3 shows the activity obtained when the particles in “state” 1 are passed to
“state” 2 after each reflection and those of 2 passed to 1 after every 1100 reflec-
tions. That is, although the two high rates represented by the two solid curves in
Figs. 3 and 5 are almost the same nevertheless the resulting activities, contrary

Fig. 5. The dashed curve, which is the same as the dashed curve of
Fig. 3, shows the activity obtained when all the 106 particles A of the
ensemble are moving inside the billiard only in “state” 2 until they are
evacuated outside. State 1 is not allowed for them. The solid curve is
the activity obtained when each particle in state 1 is passed to “state”
2 after every two reflection, whereas those in “state” 2 pass to the
opposite one only after every 1100 reflections. Note that although the
two solid curves of Fig, 3 and 5 differ slightly in their reaction rates (of
one for each reflection in Fig. 3 and of one for each two reflections in
Fig. 5) the activities are very different (see text). As for all the former
figures the abcissa axis denotes time binned in units of 60.
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to what one may expect, are very different. That is, that of Fig. 3 is much higher
than that of Fig. 5 as may be seen from the solid curve that begins at t = 60 (note
that our abcissa axis is binned in units of 60) from the high value of 5.65 · 105

and ends at t = 360. The corresponding solid curve of Fig. 5 begins at t = 60 at
the much smaller value of 4.45 · 105 and ends at the later time of t = 420. That
is, by only increasing the rate of repeating the same reaction from one for every
two reflections to one for each reflection results in an additional 120, 000 particles
that leave the billiard already at the first binned time unit. The two dashed curves
of Figs. 3 and 5 are identical and denote the same activity obtained when all the
106 particles A of the ensemble are numerically constrained to be only in “state”
2 until they evacuate the billiard.

Thus, as remarked, the important factor that causes a result of maximum ac-
tivity is the highest possible rate and not merely a large ratio between the higher and
slower frequencies. This is in accord with the analytical results of Sections 2 and
3, which are obtained for the largest rate (actually infinite) of repeating any direc-
tion of the general reversible reaction A1 + A2 + · · · + Ar ↔ B1 + B2 + · · · Bs ,
where r and s are any two arbitrary natural positive numbers. In this limit we
find, as found from the billiard simulation, that one remains, with a unit proba-
bility, with the initial reacting particles as if the repeated reaction did not occur
at all.

All the former simulations were done when the outer and inner circles radii
were 6 and 3, respectively. We note that we obtain similar numerical results for all
other assigned values of r1 and r2 up to the extreme limits of r1 >> r2 and r1 ≈ r2

provided we always have r1 > r2.
We may explain these results along the same line of explanation used to

interpret the similar results obtained in the quantum regime. It have been estab-
lished theoretically (Misra and Sudarshan, 1977; Simonius, 1978; Aharonov and
Vardi, 1980; Pascazio and Namiki, 1994; Facchi et al., 1999) and experimentally
(Itano et al., 1990; Kofman and Kurizki, 1996; Giulini et al., 1996) that taking
some quantum system which may reduce by experimenting on it to any of its
relevant eigenstates and repeat this experiment a large number N of times in a
finite total time T results, in the limit of very large N (keeping T constant), in pre-
serving the initial state of the system. This phenomenon is the Zeno effect (Misra
and Sudarshan, 1977; Simonius, 1978; Aharonov and Vardi, 1980; Pascazio and
Namiki, 1994; Facchi et al., 1999). The similar results obtained theoretically in
Section 2 suggest that this effect may be effective also in the classical reactions.
That is, repeating these reactions a large number of times, in a finite total time, may
results in remaining with the initial reacting particles (initial “state”). Moreover,
it have been shown (Aharonov and Vardi, 1980; Facchi et al., 1999) that if any
quantum system evolves in a number of different possible paths of states, each of
which begins at the same given initial state and end at another given common final
one, then it is possible to realize any such path by making dense measurement (in
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a finite total time) along it. That is, by performing in a dense manner the set of
experiments that reduce the system to the specific states that constitute the relevant
path. Similar results were obtained in Section 3, in which we show that the joint
probability density for the occurence of n given different reactions between the
initial and final times t0 and t tends to unity in the limit of densely performing
these reactions (when n → ∞).

The same results were obtained also in the billiard simulations from which
we realize that repeating a large number of times any direction of the reversible
reaction A + B ↔ A + C have, in the limit of numerically repeating it after each
single reflection, the effect as if it has never occured. This is what one obtains
in the Zeno effect (Misra and Sudarshan, 1977; Simonius, 1978; Aharonov and
Vardi, 1980; Pascazio and Namiki, 1994; Facchi et al., 1999; Itano et al., 1990)
where the system is preserved in the initial state in spite of the very large number
of measurements.

CONCLUDING REMARKS

We have discussed the classical reactions using quantum theory methods in
which particles are represented by coherent state functions and the product of
these states with their conjugates is interpreted as probability (Masao, 1976). It
is shown that if either direction of the general reaction A1 + A2 + · · · + Ar ↔
B1 + B2 + · · · Bs , where r and s are any two natural positive numbers, is repeated
a large number N of times in a finite total time then in the limit of a very large
N one remains, with a unity probability, with the initial particles only. In this
context, we differentiate between the case in which there were more than one
initial reacting particle and the case in which there is only one such particle. In
the first case the mentioned unity probability is obtained if at least one of the
initial reacting particles have zero values for its c-numbers q and p that denote
its coherent state representation, whereas, in the second case this condition is
not needed. Moreover, it has been shown that any prescribed evolution (from a
large number of possible ones) through a sequence of specific reactions may be
realized with a unit probability by densely performing these reactions. This effect
that results from increasing the rate of the reaction have been demonstrated also
through numerical simulation for the reversible reaction A + B ↔ A + C . We use
for that purpose the two-dimensional concentric billiard in which the two modes
of possible reflections represent the two sides of the reaction. It has been shown
that by repeating either side of the reaction a large number N of times (whereas
the other side was repeated with a much lower rate) we obtain, in the limit of
the largest rate of repetition, a result as if the fastly repeated reaction were not
performed at all.

The obtained results conform to the Zeno effect which is considered in
Simonius (1978) to hold also in classical and macroscopic phenomena. In this
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effect (Misra and Sudarshan, 1977; Simonius, 1978; Pascazio and Namiki, 1994;
Itano et al., 1990) the very large number of repeating the same experiment, in a
finite total time, results in preserving the system in the state it was before initiating
these repetitions. Moreover, it has been shown in Aharonov and Vardi (1980) and
Facchi et al.(1999) that this effect can be generalized to a whole path of states in
which the final state is different from the initial one. That is, the mechanism of
dense measurement caused the “realization” of this specific path from a very large
number of different ones. This result was obtained by calculating the joint proba-
bility of n different reactions, each of which occurs at its specific place and time,
where we see that densely performing these reactions causes the joint probability
for the occurence of the n reactions (where n → ∞) to tend to the unity value.
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